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Abstract
A self-driving vehicle (SDV) must be able to perceive its

surroundings and predict the future behavior of other traf-
fic participants. Existing works either perform object de-
tection followed by trajectory forecasting of the detected
objects, or predict dense occupancy and flow grids for the
whole scene. The former poses a safety concern as the num-
ber of detections needs to be kept low for efficiency rea-
sons, sacrificing object recall. The latter is computation-
ally expensive due to the high-dimensionality of the out-
put grid, and suffers from the limited receptive field inher-
ent to fully convolutional networks. Furthermore, both ap-
proaches employ many computational resources predicting
areas or objects that might never be queried by the motion
planner. This motivates our unified approach to percep-
tion and future prediction that implicitly represents occu-
pancy and flow over time with a single neural network. Our
method avoids unnecessary computation, as it can be di-
rectly queried by the motion planner at continuous spatio-
temporal locations. Moreover, we design an architecture
that overcomes the limited receptive field of previous ex-
plicit occupancy prediction methods by adding an efficient
yet effective global attention mechanism. Through exten-
sive experiments in both urban and highway settings, we
demonstrate that our implicit model outperforms the cur-
rent state-of-the-art. For more information, visit the project
website: https://waabi.ai/research/implicito.

1. Introduction
The goal of a self-driving vehicle is to take sensor ob-

servations of the environment and offline evidence such as
high-definition (HD) maps and execute a safe and comfort-
able plan towards its destination. Meanwhile, it is important
to produce interpretable representations that explain why
the vehicle performed a certain maneuver, particularly if a
dangerous event were to occur. To satisfy this, traditional
autonomy stacks [2, 6, 9, 14, 15, 20, 32, 38, 39] break down
the problem into 3 tasks: perception, motion forecasting and
motion planning. Perception leverages sensor data to local-
ize the traffic participants in the scene. Motion forecasting
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Figure 1. Left: Explicit approaches predict whole-scene occu-
pancy and flow on a spatio-temporal grid. Right: Our implicit
approach only predicts occupancy and flow at queried continuous
points, focusing on what matters for downstream planning.

outputs the distribution of their future motion, which is typ-
ically multimodal. Finally, motion planning is tasked with
deciding which maneuver the SDV should execute.

Most autonomy systems are object-based, which in-
volves detecting the objects of interest in the scene. To do
so, object detectors threshold predicted confidence scores
to determine which objects in the scene, a trade off be-
tween precision and recall. Furthermore, object-based mo-
tion forecasting methods are limited to predict only a hand-
ful of sample trajectories or parametric distributions with
closed-form likelihood for tractability, as they scale linearly
with the number of objects and must run online in the vehi-
cle. This causes information loss that could result in unsafe
situations [30], e.g., if a solid object is below the detection
threshold, or the future behavior of the object is not captured
by the simplistic future trajectory estimates.

In recent years, object-free approaches [3, 12, 29, 30]
that model the presence, location and future behavior of all
agents in the scene via a non-parametric distribution have
emerged to address the shortcomings of object-based mod-
els. Object-free approaches predict occupancy probability
and motion for each cell in a spatio-temporal grid, directly
from sensor data. More concretely, the spatio-temporal grid
is a 3-dimensional dense grid with two spatial dimensions
representing the bird’s-eye view, and a temporal dimension
from the current observation time to a future horizon of
choice. All dimensions are quantized at regular intervals.



In this paradigm, no detection confidence thresholding is re-
quired and the distribution over future motion is much more
expressive, enabling the downstream motion planner to plan
with consideration of low-probability objects and futures.
Unfortunately, object-free approaches are computationally
expensive as the grid must be very high-dimensional to mit-
igate quantization errors. However, most of the computa-
tion and memory employed in object-free methods is un-
necessary, as motion planners only need to cost a set of
spatio-temporal points around candidate trajectories, and
not a dense region of interest (RoI). We refer the reader to
Fig. 1 for an illustration.

This motivates our approach, IMPLICITO, which utilizes
an implicit representation to predict both occupancy proba-
bility and flow over time directly from raw sensor data and
HD maps. This enables downstream tasks such as motion
planning to efficiently evaluate a large collection of spatio-
temporal query points in parallel, focusing on areas of in-
terest where there are potential interactions with the self-
driving vehicle. We design an architecture that overcomes
the limited receptive field of fully convolutional explicit ar-
chitectures [12, 24, 29, 30] by adding an efficient yet effec-
tive global attention mechanism. In particular, we leverage
deformable convolutions [8] and cross attention [37] to fo-
cus on a compact set of distant regions per query, giving
the predictions a global context. This is useful as dynamic
objects can move at very high speeds, particularly on the
highway. For instance, when predicting in-lane occupancy
3 seconds into the future on a road where the speed limit is
30 m/s, the attention can look approximately 90 meters back
along the lane to find the corresponding sensor evidence.
Extensive experiments in both urban and highway scenar-
ios show that our object-free implicit approach outperforms
the two prevalent paradigms in the literature on the task of
occupancy-flow prediction: (i) object-based methods that
first perform object detection to localize a finite set of ob-
jects in the scene, and then predict their future trajectory dis-
tribution (ii) object-free explicit methods that predict dense
spatio-temporal grids of occupancy and motion.

2. Related Work
In this section we discuss traditional object-based per-

ception and prediction as well as object-free perception and
prediction. We also outline literature in implicit geometric
reconstruction, which inspired our approach.
Object-based Perception and Motion Forecasting: The
majority of previous works have adopted object-based rea-
soning with a 2-stage pipeline, where first object detec-
tion [17, 42] and tracking [33, 38] are performed, followed
by trajectory prediction from past tracks [4, 28, 35, 44].
As there are multiple possible futures, these methods ei-
ther generate a fixed number of modes with probabilities
and/or draw samples to characterize the trajectory distribu-

tion. This paradigm has three main issues [30, 36]: (1) un-
certainty is not propagated from perception to downstream
prediction, (2) the predicted future distributions must be
overly compact in practice, as their size grows linearly with
the number of objects, (3) thresholded decisions in percep-
tion make the planner blind to undetected objects. Several
works [1, 2, 20, 23] tackle (1) by optimizing jointly through
the multiple stages. However, (2) and (3) are fundamentally
hard to address in this object-based paradigm as it implies
a finite set of objects that can be large in crowded scenes.
In contrast, our model is agnostic to the number of objects
in the scene since it predicts the occupancy probability and
flow vectors at desired spatio-temporal points.

Object-Free Perception and Prediction: These methods
forecast future occupancy and motion from sensor data such
as LiDAR [3, 30] and camera [12, 13, 29], without consid-
ering individual actors. P3 [30] first introduced temporal
semantic occupancy grids as an interpretable intermediate
representation for motion planning. MP3 [3] enhanced this
representation by predicting an initial occupancy grid and
warping it into the future with a spatio-temporal grid of
multi-modal flow predictions. Compared to fully convolu-
tional architectures, this flow-warping increases the effec-
tive receptive field for occupancy prediction, and imposes
prior on how occupancy can evolve over time. However,
forward flow struggles with dispersing occupancy over time
when uncertainty increases, as pointed out in [24]. FIERY
[12] added instance reasoning to the object-free paradigm
as a postprocessing, improving interpretability. OCCFLOW
[24] introduced backwards flow as a representation that can
capture multi-modal forward motions with just one flow
vector prediction per grid cell. However, OCCFLOW iso-
lates the occupancy and flow forecasting problem by assum-
ing input features (e.g., position, velocity, extent etc.) from
a detection and tracking module, instead of raw sensor data.

While our work belongs to the category of object-
free methods, our model only predicts occupancy-flow at
select query points instead of outputting spatio-temporal
occupancy-flow grids with fully convolutional networks.
We achieve this with an efficient and effective global at-
tention mechanism. This makes the model more expressive
while improving efficiency by reducing the computation to
only that which matters to downstream tasks.

Implicit Geometric Reconstruction: Geometric recon-
struction refers to the task of predicting the 3D shape of an
object given some incomplete representation of it, e.g., im-
ages, LiDAR, voxels. Implicit neural geometric reconstruc-
tion methods [5, 25, 26] have been shown to outperform ex-
plicit counterparts, which represent the 3D shape as a grid,
set of points, voxels or a mesh. In contrast, implicit methods
train a neural network to predict a continuous field that as-
signs a value to each point in 3D space, so that a shape can
be extracted as an iso-surface. More concretely, this net-



work can predict non-linear binary occupancy [5, 25] over
3D space f(x) : R3 → [0, 1], or a signed distance func-
tion to the surface [26]. Our work is motivated by these
ideas, and we explore their application to the task of occu-
pancy and flow prediction for self-driving. Particularly, the
architecture of our implicit prediction decoder is inspired by
Convolutional Occupancy Networks [27], which proposed
a translation equivariant approach to accurately reconstruct
large scale scenes.

3. Implicit Perception and Future Prediction

Understanding the temporal occupancy and motion of
traffic participants in the scene is critical for motion plan-
ning, allowing the self-driving vehicle (SDV) to avoid colli-
sions, maintain safety buffers and keep a safe headway [3].
Previous methods [3, 12, 16, 24, 30] represent occupancy
and motion in bird’s-eye view (BEV) explicitly with a dis-
crete spatio-temporal grid. This approach is resource inef-
ficient, because it uses computational resources to predict
in regions that are irrelevant to the SDV. In this section, we
introduce IMPLICITO, an implicit neural network that can
be queried for both scene occupancy and motion at any 3-
dimensional continuous point (x, y, t). Here, x and y are
spatial coordinates in BEV and t = t̄ +∆t is the time into
the future, where t̄ refers to the current timestep at which
we are making the predictions, and ∆t ≥ 0 is an offset
from the current timestep into the future. This enables the
motion planner to request the computation only at points
around the candidate trajectories that are being considered.
In the remainder of this section, we first describe the task
parametrization, then the network architecture, and finally
how to train our approach.

3.1. Task Parameterization

We discuss the task by defining its inputs and outputs.
Input parameterization: Our model takes as input a
voxelized LiDAR representation (L) as well as a raster
of the HD map (M ). For the LiDAR, let St̄ =
{st̄−Thistory+1, . . . , st̄} be the sequence of the most recent
Thistory = 5 sweeps. More precisely, st′ ∈ RPt′×3 is
the LiDAR sweep ending at timestep t′ containing a set
of Pt′ points, each of which described by three features:
(px, py, ph). px and py are the location of the point relative
to the SDV’s reference frame at the current timestep t̄ —
centered at the SDV’s current position and with the x-axis
pointing along the direction of the its heading. ph corre-
sponds to the height of the point above the ground. Finally,
L = V oxelize(St) ∈ RThistoryD×H×W , where we follow
the multi-sweep BEV voxelization proposed in [41] with
a discretization of D depth channels normal to the BEV
plane, H height pixels and W width pixels. For the raster
map, we take the lane centerlines C represented as polylines

from the high-definition map and rasterize them on a sin-
gle channel M = Raster(C) ∈ R1×H×W with the same
spatial dimensions.
Output parameterization: Let q = (x, y, t) ∈ R3 be a
spatio-temporal point in BEV, at a future time t. The task is
to predict the probability of occupancy o : R3 → [0, 1], and
the flow vector f : R3 → R2 specifying the BEV motion of
any agent that occupies that location. We model the back-
wards flow [24] for the flow vector f , as it can capture multi-
modal forward motions with a single reverse flow vector per
grid cell. More concretely, backwards flow describes the
motion at time t and location (x, y) as the translation vector
at that location from t − 1 to t, should there be an object
occupying it:

f(x, y, t) = (x′, y′)t−1 − (x, y)t, (1)

where (x′, y′) denotes the BEV location at time t− 1 of the
point occupying (x, y) at time t.

3.2. Network Architecture

We parameterize the predicted occupancy ô and flow f̂
with a multi-head neural network ψ. This network takes as
input the voxelized LiDAR L, raster map M , and a mini-
batch Q containing |Q| spatio-temporal query points q, and
estimates the occupancy Ô = {ô(q)}q∈Q and flow F̂ =

{f̂(q)}q∈Q for the mini-batch in parallel:

Ô, F̂ = ψ(L,M,Q) (2)

The network ψ is divided into a convolutional encoder that
computes scene features, and an implicit decoder that out-
puts the occupancy-flow estimates, as shown in Fig. 2.

Inspired by [42], our encoder consists of two convolu-
tional stems that process the BEV LiDAR and map raster,
a ResNet [11] that takes the concatenation of the LiDAR
and map raster features and outputs multi-resolution fea-
ture planes, and a lightweight Feature Pyramid Network
(FPN) [21] that processes these feature planes. This results
in a BEV feature map at half the resolution of the inputs,
i.e., Z ∈ RC×H

2 ×W
2 , that contains contextual features cap-

turing the geometry, semantics, and motion of the scene. It
is worth noting that every spatial location (feature vector)
in the feature map Z contains spatial information about its
neighborhood (the size of the receptive field of the encoder),
as well as temporal information over the past Thistory sec-
onds. In other words, each feature vector in Z may contain
important cues regarding the motion, the local road geome-
try, and neighboring agents.

We design an implicit occupancy and flow decoder mo-
tivated by the intuition that the occupancy at query point
q = (x, y, t) ∈ Q might be caused by a distant object mov-
ing at a fast speed prior to time t. Thus, we would like to use
the local features around the spatio-temporal query location



Figure 2. An overview of our model, IMPLICITO. Voxelized LiDAR and an HD map raster are encoded by a two-stream CNN. The
resulting feature map Z is used by the decoder to obtain relevant features for the query points Q and eventually predict occupancy Ô and
reverse flow F̂ . We illustrate the attention for a single query point q, but the inference is fully parallel across query points Q.

to suggest where to look next. For instance, there might be
more expressive features about an object around its origi-
nal position (at times {(t̄−Thistory +1), . . . , t̄}) since that
is where the LiDAR evidence is. Neighboring traffic par-
ticipants that might interact with the object occupying the
query point at time t are also relevant to look for (e.g., lead
vehicle, another vehicle arriving at a merging point at a sim-
ilar time).

To implement these intuitions, we first bi-linearly inter-
polate the feature map Z at the query BEV location qx,y =
(x, y) to obtain the feature vector zq = Interp(Z, x, y) ∈
RC that contains local information around the query. We
then predict K reference points {r1, . . . , rK} by offseting
the initial query point rk = q+∆qk, where the offsets ∆q
are computed by employing the fully connected ResNet-
based architecture proposed by Convolutional Occupancy
Networks [27]. For all offsets we then obtain the corre-
sponding features zrk = Interp(Z, rk). This can be seen
as a form of deformable convolution [8]; a layer that pre-
dicts and adds 2D offsets to the regular grid sampling loca-
tions of a convolution, and bi-linearly interpolates for fea-
ture vectors at those offset locations. To aggregate the infor-
mation from the deformed sample locations, we use cross
attention between learned linear projections of zq ∈ R1×C

and Zr = {zr1 , . . . , zrk} ∈ RK×C . The result is the ag-
gregated feature vector z. See Fig. 2 for a visualization of
this feature aggregation procedure. Finally, z and zq are
concatenated, which, along with q, is processed by another
fully connected ResNet-based architecture with two linear
layer heads to predict occupancy logits and flow. Please see
additional implementation details and a full computational
graph of our model in the supplementary.

3.3. Training

We train our implicit network by minimizing a linear
combination of an occupancy loss and a flow loss

L = Lo + λfLf . (3)

Occupancy is supervised with binary cross entropy loss H
between the predicted and the ground truth occupancy at
each query point q ∈ Q,

Lo =
1

|Q|
∑
q∈Q

H(o(q), ô(q)), (4)

where o(q) and ô(q) are ground truth and predicted occu-
pancy and query point q, respectively. The ground truth
labels are generated by directly calculating whether or not
the query point lies within one of the bounding boxes in the
scene. We supervised the flow only for query points that
belong to foreground, i.e., points that are occupied. By do-
ing so, the model learns to predict the motion of a query
location should it be occupied. We use the ℓ2 error, where
the labels are backwards flow targets from t to t − 1 com-
puted as rigid transformations between consecutive object
box annotations:

Lf =
1

|Q|
∑
q∈Q

o(q)||f(q)− f̂(q)||2. (5)

We train with a batch of continuous query points Q,
as opposed to points on a regular grid as previously pro-
posed. More concretely, for each example we sample |Q|
query points uniformly across the spatio-temporal volume
[0, H]× [0,W ]× [0, T ], where H ∈ R and W ∈ R are the
height and width of a rectangular region of interest (RoI) in
BEV surrounding the SDV, and T ∈ R is the future horizon
we are forecasting.

4. Experiments
In this section, we introduce the datasets and metrics

used to benchmark occupancy-flow perception and predic-
tion, and show that IMPLICITO outperforms the state-of-
the-art in both urban and highway settings. Further, we
conduct two ablations studies to understand the effect of
our contributions to the decoder architecture, and an analy-



sis of the inference time of our implicit decoder compared
to explicit alternatives.

Datasets: We conduct our experiments using two
datasets: Argoverse 2 Sensor [40] (urban), and High-
waySim (highway). The Argoverse 2 Sensor (AV2) dataset
is collected in U.S. cities and consists of 850 fifteen-second
sequences with sensor data from two 32-beam LiDARs at
a frequency of 10 Hz, high-definition maps with lane-graph
and ground-height data, and bounding box annotations. We
split the set into 700 sequences for training and 150 for val-
idation, and break the sequences into examples that include
5 frames of LiDAR history and a prediction time horizon of
5 seconds. In our experiments, we only consider the occu-
pancy and flow of vehicles, which we define as the union of
the following AV2 annotation classes: regular vehicle, large
vehicle, wheeled device, box truck, truck, vehicular trailer,
truck cab, school bus, articulated bus, message-board trailer
and railed vehicle. Query points are labeled with occupancy
by checking if they intersect with the annotated bounding
boxes. Occupied query points are labeled with flow vec-
tors using finite differences between the current query point
and where that point was in the previous frame. Incom-
plete tracks caused by missing annotations were filled-in us-
ing the constant turn rate and acceleration (CTRA) motion
model [18], so the models learn the prior that occupancy is
persistent. HighwaySim (HwySim) is a dataset generated
with a state-of-the-art simulator, containing realistic high-
way traffic scenarios including on-ramps, off-ramps, and
curved roads. A Pandar64 LiDAR is realistically simulated,
and maps with lane-graph and ground-height are provided.
700 sequences of around 15 seconds each are split 80/20
into training/validation. Sequences are cut into examples,
each with a history of 5 past LiDAR frames and a 5 s future
horizon.

Metrics: To be fair with the baselines, we evaluate all
models with query points on a regular spatio-temporal grid.
Temporally, we evaluate a prediction horizon of 5 seconds
with a resolution of 0.5 seconds for both datasets. In AV2,
we employ a rectangular RoI of 80 by 80 meters centered
around the SDV position at time t̄ with a spatial grid res-
olution of 0.2 m. In HwySim, we use an asymmetric ROI
with 200 meters ahead and 40 meters back and to the sides
of the SDV at time t̄ with a grid resolution of 0.4 m. This is
to evaluate on highway vehicles moving fast (up to 30 m/s)
in the direction of the SDV over the full prediction horizon.
For simplicity, we refer to the grid cell centroids as “query-
points”. We evaluate the ability of the models to recover the
ground-truth occupancy-flow. In particular, we utilize met-
rics to measure the precision, recall, accuracy and calibra-
tion of the occupancy, the flow errors, and the consistency
between the occupancy and flow predictions.

Mean average precision (mAP): mAP captures if the
model correctly predicts a higher occupancy probability in

occupied regions relative to unoccupied regions, i.e., an ac-
curate ranking of occupancy probability. mAP is computed
as the area under the precision recall curve averaged across
all timesteps in the prediction horizon.

Soft-IoU: We follow prior works [16, 24, 34] in the use
of soft intersection over union for assessing occupancy pre-
dictions:

Soft-IoU =

∑
q∈Q o(q)ô(q)∑

q∈Q(o(q) + ô(q)− o(q)ô(q))
. (6)

Unlike mAP, Soft-IoU also considers the magnitude of pre-
dicted occupancy probability instead of just the predicted
probability ranking.

Expected Calibration Error (ECE): ECE measures the
expected difference between model confidence and accu-
racy. This is desirable because the occupancy outputs may
be used by downstream planners in a probabilistic way —
e.g., to compute the expected collision cost [3]. Thus, we
need to understand if the predicted probabilities are poorly
calibrated, i.e., suffering from over-confidence or under-
confidence [10, 22].

Foreground mean end-point-error (EPE): This metric
measures the average L2 flow error at each occupied query
point:

EPE =
1∑

q∈Q o(q)

∑
q∈Q

o(q)||f(q)− f̂(q)||2. (7)

Flow Grounded Metrics: Let Ot, Ôt, and F̂t denote the
occupancy labels, predicted occupancy, and predicted flow
on a spatio-temporal grid at time t, respectively. The flow
grounded occupancy grid at timestep t > t̄, is obtained by
warping the ground truth occupancy grid at the previous
timestep Ot−1 with the predicted flow field F̂t, and mul-
tiplying it element-wise with the predicted occupancy at the
current timestep Ôt [34]. We report flow-grounded Soft-
IoU and mAP by comparing the flow-grounded occupancy
to the occupancy ground truth. The flow grounded metrics
are useful for evaluating the consistency between the occu-
pancy and flow predictions, as you can only achieve a high
score if (1) the flow is accurate and (2) the warped ground-
truth occupancy aligns well with the predicted occupancy
for the next time step.

Inference Time: When measuring inference time, all
methods were implemented with vanilla PyTorch code (no
custom kernels) and run on a single Nvidia GeForce GTX
1080 Ti. This metric is sensitive to implementation, hard-
ware, and optimizations, and thus should not be compared
across different works.
Baselines: We compare against five baselines that cover
the different perception and prediction paradigms outlined
in the Sec. 1. MULTIPATH [4], LANEGCN [19], and
GORELA [7] are object-based trajectory prediction models.



AV2 HwySim

mAP ↑ Soft-IoU ↑ ECE ↓ EPE ↓ Flow Grounded mAP ↑ Soft-IoU ↑ ECE ↓ EPE ↓ Flow Grounded

mAP ↑ Soft-IoU ↓ mAP ↑ Soft-IoU ↓

MULTIPATH [4] 0.625 0.398 0.916 0.982 0.803 0.321 0.299 0.231 0.433 4.227 0.463 0.154
LANEGCN [19] 0.620 0.449 1.138 0.709 0.778 0.350 0.472 0.283 0.337 2.951 0.636 0.194
GORELA [7] 0.609 0.453 1.161 0.671 0.813 0.355 0.548 0.259 0.288 2.206 0.722 0.166
OCCFLOW [24] 0.675 0.356 0.348 0.390 0.886 0.493 0.597 0.370 0.260 0.842 0.841 0.330
MP3 [3] 0.774 0.422 0.201 0.472 0.902 0.466 0.637 0.246 0.208 1.172 0.833 0.193
IMPLICITO 0.799 0.480 0.193 0.267 0.936 0.597 0.716 0.415 0.076 0.510 0.886 0.492

Table 1. Comparing our proposed model IMPLICITO to state-of-the-art perception and prediction models on AV2 and HwySim. The first
three rows are object-based models, while the others are object-free.

Ground Truth GORELA OCCFLOW MP3 IMPLICITO
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Figure 3. Occupancy predictions of various models (columns) across four scenes (rows) in AV2. Opacity denotes occupancy probability,
and the colormap indicates prediction time ∆t (from current to future horizon, as shown on the right). Failure modes are highlighted with
colored boxes: occupancy hallucination, fading/missing occupancy, inconsistent with map, inconsistent with actors, miss-detection.

Following [16, 22], to evaluate these object-based models
on the task of occupancy-flow prediction, we rasterize the
trajectory predictions to generate occupancy and flow fields.
For occupancy, we rasterize the multi-modal trajectory pre-
dictions weighted by the mode probabilities. For flow, we
generate a multi-modal spatio-temporal flow field, where
for each mode, a grid cell predicted to be occupied by an
object contains the forward-flow rigid-transformations de-
fined by the trajectory of that object. OCCFLOW uses the
occupancy-flow prediction architecture and flow-traced loss

from Mahjourian et al. [24], using input features from a pre-
trained detection and tracking module. More information
on the detector can be found in the supplementary. MP3 [3]
is an end-to-end trained perception and prediction method
that predicts multi-modal forward-flow vectors and associ-
ated probabilities, and uses these to warp a predicted ini-
tial occupancy grid forward in time. We compute EPE on
the expected motion vector (the probability-weighted sum
of modes) when evaluating MP3.
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Figure 4. Visualizations of the backwards flow field predictions
and attention offset predictions of IMPLICITO at the last timestep
of the prediction horizon on Scene 1 and Scene 2 from Fig. 3.

Benchmark against state-of-the-art: Tab. 1 presents our
results on AV2 and HwySim against the state-of-the-art
baselines described above. For this experiment, our model
IMPLICITO predicts K = 1 attention offset. Our method
outperforms all others across all metrics and both datasets,
showing the suitability of IMPLICITO in both urban and
highway settings. Fig. 3 displays qualitative results of these
models on AV2. Notice that all the object-based mod-
els generally under-perform relative to the object-free ap-
proaches. This is likely because these models are not op-
timized for occupancy-flow directly, rather they are trained
to predict accurate trajectories. The qualitative results of
GORELA in Fig. 3 show that thresholding to produce in-
stances can result in missed detections (Scene 4). Further,
the trajectory parameterization results in rasterized occu-
pancy that is more often inconsistent with the map (Scenes
1 and 2), or inconsistent due to apparent collisions with
other actors (Scenes 1 and 3). This agrees with the re-
sults from [16], and reaffirms the utility of the object-free
parameterization. Interestingly, on AV2, the object-based
approaches have a high Soft-IoU despite their inaccurate
occupancy ranking. We find this is because these mod-
els are overconfident (reflected in their high ECE), which
is heavily rewarded by Soft-IoU on the many “easy” ex-
amples in AV2 with stationary vehicles (in the evaluation
set, 64.4% of actors are static within the prediction hori-
zon). This is supported by the worse relative Soft-IoU of
these object-based models on HwySim, which has a much
higher proportion of dynamic actors. Interestingly MP3
outperforms OCCFLOW in the joint perception and predic-
tion setting, contrary to the results under perfect perception
assumption reported by [24]. We hypothesize this is be-
cause MP3 is trained end-to-end and does not have the in-

mAP ↑ Soft-IoU ↑ ECE ↓ EPE ↓ Flow Grounded

mAP ↑ Soft-IoU ↑

AV
2

MP3 [3] 0.774 0.422 0.201 0.472 0.902 0.466
CONVNET 0.796 0.466 0.135 0.312 0.929 0.581
CONVNETFT [24] 0.796 0.475 0.198 0.302 0.929 0.582
IMPLICITO 0.799 0.480 0.193 0.267 0.936 0.597

H
w

yS
im

MP3 [3] 0.637 0.246 0.208 1.172 0.833 0.193
CONVNET 0.648 0.344 0.024 0.657 0.859 0.408
CONVNETFT [24] 0.654 0.351 0.024 0.657 0.860 0.416
IMPLICITO 0.716 0.415 0.076 0.510 0.886 0.492

Table 2. Comparing the performance of occupancy-flow decoders,
trained end-to-end, with the same encoder.

termediate object-based detection representation. We can
see in Fig. 3 that OCCFLOW hallucinates occupancy at the
initial timestep (Scenes 1 and 4), and misses the detection of
a vehicle in Scene 4, both of which are artifacts of training
with input from a pre-trained detection model.

Flow and Attention visualization: Fig. 4 plots the re-
verse flow vectors as well as the attention offsets on two of
the scenes from Fig. 3 (the middle two rows). The first ob-
servation is that the flow vectors and attention offsets rely
very heavily on the map raster, as expected. The second
observation is that the direction of the backward flow vec-
tors and the attention offsets are very heavily correlated.
This shows that the model has learned to “look backwards”
along the lanes to gather relevant features despite the offsets
being unsupervised. We hypothesize that IMPLICITO out-
performs the others because of its larger effective receptive
field. Fig. 3 shows that IMPLICITO maintains occupancy
into the future more accurately than MP3. We attribute this
to the attention offsets being a more general and expressive
mechanism than MP3’s forward flow warping. To illustrate
this further, in the supplementary we plot occupancy met-
rics as a function of prediction time ∆t.

Influence of the decoder architecture: In this section,
we compare various occupancy-flow decoders, all trained
end-to-end from LiDAR input with the same encoder ar-
chitecture as IMPLICITO (described in Sec. 3.2). This al-
lows us to isolate the effect of our implicit decoder archi-
tecture design. CONVNET implements the decoder from
Mahjourian et al. [24], but it takes as input a feature map
from the encoder, instead of hand-crafted detection fea-
tures. CONVNETFT denotes this same decoder architecture
trained with the auxiliary supervision of flow trace loss [24].
Note that MP3 and IMPLICITO from Tab. 1 already use this
encoder and are trained end-to-end, so the same results are
presented for this ablation study. As shown in Tab. 2 our
implicit decoder IMPLICITO outperforms all the other de-
coders across all metrics except for ECE, on both HwySim
and AV2. Notice that CONVNET and CONVNETFT outper-
form their detection-based counterpart OCCFLOW in Tab. 1
by a significant margin. This highlights the utility of end-to-



Num. offsets mAP ↑ Soft-IoU ↑ ECE ↓ EPE ↓ Flow Grounded

mAP ↑ Soft-IoU ↑

AV
2 K = 0 0.790 0.456 0.128 0.300 0.930 0.583

K = 1 0.799 0.480 0.193 0.267 0.936 0.597
K = 4 0.797 0.478 0.257 0.252 0.936 0.570

H
w

yS
im K = 0 0.649 0.359 0.052 0.686 0.857 0.421

K = 1 0.716 0.415 0.076 0.510 0.886 0.492
K = 4 0.714 0.404 0.051 0.509 0.890 0.487

Table 3. Ablation study on the effect of the number of predicted
attention offsets on the performance of IMPLICITO.

end training in the object-free paradigm for occupancy-flow
prediction. Evidently, thresholding to produce detections
and hand-crafted features limits the information available
for occupancy-flow perception and prediction. Again, we
hypothesize that IMPLICITO outperforms the others due to
its offset mechanism increasing the effective receptive field.
Even with the powerful encoder and flow warping mecha-
nism, CONVNET and MP3 fail to match this. This is sup-
ported by the relatively close performance of CONVNET to
IMPLICITO on AV2, but not HwySim. On HwySim most
vehicles travel larger fraction of the ROI, so a larger effec-
tive receptive field is necessary. On AV2 more vehicles are
stationary or move slowly, so a large receptive field is less
important for occupancy-flow prediction.
Influence of the number of offsets (K): Based on the
attention offset visualizations in Fig. 4, we have conjec-
tured that the predicted attention offsets of our implicit de-
coder are responsible for its state-of-the-art performance.
In this section, we ablate the number of predicted offsets
of IMPLICITO to investigate this further. Tab. 3 reports re-
sults for implicit decoders with a different number of atten-
tion offsets. K = 0 denotes no attention offset, predict-
ing occupancy-flow from zq alone without cross-attention
(see Fig. 2). We first note that K = 1 clearly outperforms
K = 0, particularly on HwySim. This aligns with our in-
tuition that the main function of the attention offsets is to
expand the receptive field of a query point. Since vehicles
travel at much lower speeds in urban than highway, AV2 has
a lower effective receptive field requirement than HwySim
and thus the improvements are not as pronounced. We ob-
serve fairly close and mixed results between one and four
attention offsets. K = 1 has the best occupancy prediction
metrics, while K = 4 is the best in some flow metrics. Un-
der the assumption that the predicted offsets look back to
where occupancy could have come from in the past, K > 1
would only improve performance over K = 1 when occu-
pancy could come from more than one past location (e.g.,
complex intersections, Scene 2 of Fig. 3). These examples
are rare in the training and evaluation datasets, and having
redundant offsets in the simple cases where one offset suf-
fices could introduce noise, explaining why K = 4 does
not outperform K = 1. See the supplementary for visual-
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Figure 5. Decoder inference time as a function of the number of
query points for the object-free decoders presented in Tab. 1 on
HwySim. IMPLICITO uses K = 1.

izations of the attention offsets when K = 4.
Inference Time Comparison: In this section we compare
the decoder inference time of explicit object-free methods
in the literature (from Tab. 1) against the decoder of IM-
PLICITO with K = 1. Fig. 5 presents the inference time
as a function of the number of query points. For the ex-
plicit models (MP3, OCCFLOW), this includes the time to
bi-linearly interpolate occupancy probability at the contin-
uous query points. The plot evaluates on query points in a
range (1, 2·105), that most planners will operate within. For
instance, 2, 000 candidate trajectories × 10 timesteps per
trajectory is well aligned with the literature [3, 29–31, 43].
With 200, 000 trajectories, this allows for 10 queries per
timestep to integrate occupancy over the volume of the SDV,
which should provide a good estimation of collision proba-
bility. We notice that for ≲ 20, 000 query points, IMPLIC-
ITO has a constant inference time because it is batched over
query points. Once the GPU is saturated, the operations are
run sequentially so inference time increases approximately
linearly. The explicit decoders have approximately constant
inference times (the only increase is due to bilinear interpo-
lation), but are significantly slower than IMPLICITO in this
“planner-relevant” range.

5. Conclusion

In this paper, we have proposed a unified approach to
joint perception and prediction for self-driving that implic-
itly represents occupancy and flow over time with a neural
network. This queryable implicit representation can provide
information to a downstream motion planner more effec-
tively and efficiently. We showcased that our implicit archi-
tecture predicts occupancy and flow more accurately than
contemporary explicit approaches in both urban and high-
way settings. Further, this approach outperforms more tra-
ditional object-based perception and prediction paradigms.
In the future, we plan to assess the impact of our improve-
ments on the downstream task of motion planning.
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